题目
Given an array with n integers, your task is to check if it could become non-decreasing by modifying at most 1 element.
We define an array is non-decreasing if array[i] <= array[i + 1] holds for every i (1 <= i < n).
Example 1:
Input: [4,2,3]
Output: True
Explanation: You could modify the first 4 to 1 to get a non-decreasing array.
Example 2:
Input: [4,2,1]
Output: False
Explanation: You can’t get a non-decreasing array by modify at most one element. Note: The n belongs to [1, 10,000].
解法
算法复杂度 O(n)
,空间复杂度 O(1)
思路
这个数组除了一个元素外,其它元素都是有序的,如果我们摘除这个元素,那么摘除后的数组是有序的。怎么找
到这个摘除的元素呢?如果我们遇到了第一个 nums[i] > nums[i+1]
的元素。说明这个位置附近必须要调整,
而且这种调整只能出现一次,因为题目要求最多只能修改一次。
a = nums[i-1]
b = nums[i]
c = nums[i+1]
d = nums[i+2]
这 4 个值必须满足一定关系我们才能调整它为有序,关系是:
a <= d
b>=a && b <=d
or `c>=a && c<=d
找到这种逆序对后,它将数组拆成两个各自有序的数组,且两个数组块要满足前者最大值小于等于后者最小者。 二者这个逆序对这两个元素也必须在这个最大值和最小值之间。
代码
class Solution {
public:
bool checkPossibility(vector<int>& nums) {
int start = 0;
int end = nums.size();
int reversal = 0;
int a, b, c, d;
a = INT_MIN;
d = INT_MAX;
while (start < end - 1) {
if (nums[start] > nums[start+1]) {
if (reversal != 0) {
return false;
}
reversal += 1;
b = nums[start];
c = nums[start+1];
if (start > 0) a = nums[start - 1];
if (start + 2 < end) d = nums[start+2];
bool bb = b >= a && b <= d;
bool cc = c >= a && c <= d;
if (!(bb || cc)) {
return false;
}
}
++start;
}
return true;
// cout << a << " " << b << " " << c << " " << d << endl;
}
};
本文完